Heat and mass transport phenomena in polymer electrolyte

membrane fuel cells micro/nano porous layers
Sina Salari, Claire McCague, Mohammad Ahadi, Mickey Tam™ and Majid Bahrami

School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, Canada
*Automotive Fuel Cell Corporation, Burnaby, Canada

Polymer Electrolyte Membrane Fuel Cells Heat Transfer Model for Catalyst Layer Diffusivity Model for Catalyst Layer

Objective:

N Modeling by a multi-scale unit cell approach: Different unit cells for pores with
: : N | 2N : : : o Meso & macropores
Perform cutting- r rch on PEM fuel cell materials focused on | | . . different equivalent diameters )
eriorm cutting _edge esearen e vet @ > Unit cell of the catalyst layer at micro-scale . > 20 nm
analytical modeling and experimental investigation of the transport = .
properties of micro/nano structured fuel cell components, including: » Unit cell of the agglomerates clustered around pores at nano-scale » Unit cell around primary particles
. AR consist of solid and void parts (D<50
. » Agglomerates fully covered by ionomer if nm
» Thermal conductivity I I 99 y. y _ ) Y _
> Diffusivity » Agglomerates partially covered by ionomer > Unit cell around agglomerates consist Primary particle Agglomerate Aggregate
Current Current . —~ — - — -
> Permeabilit Collector " B N Collector of POrous and void partS 20 nm 100 - 300 nm 1-3um
ity : . : .
. . Catayst  Membrans  Catalys > Unit cell of carbon supported platinum particles (Pt/C) inside each (50nm<D<300nm)
» Interfacial resistance . :
> Electrical ductivit Membrane electrode agglomerate at nano-scale » Unit cell around aggregates consist of
ectrical conductivity o .
assembly (MEA) » Fundamental heat transfer and elasticity laws are used to model the g porous and void parts (300nm<D<3um)

local properties and transport phenomena within each unit cell Considering both Knudsen and bulk

» The performance of a PEMFC relies on the effectiveness of the diffusion mechanisms

transport of heat, mass, and charge in membrane-electrode assembly » The unit cell models at multiple scales are integrated to obtain the Unit cell of the catalyst layer
(MEA) heat transfer model of the whole catalyst layer » Considering temperature dependency
» Diffusion is the mechanism through which gas of reactants reach Pt Future work
nanoparticles in catalyst layer (CL e
P y yer (CL) Gas diffusion layer (GDL) > lonomer coverage
_ _ _ surface and cross section 0agg.~ 100-300 nm Catalyst Uagg.~100-300 nm dpyc ~ 20-30 nm ® [ o= incremental intrusion (mLig C1)
» The better design of the CL, the more active Pt nanoparticles, the less = packed bed = _ c < > > Humidity — |-~ -Cumulative intrusion (mL/g CL) =
. . . . / o ;
Pt loading required in CL, and the lower the production cost s 1 lonomer layer S Catalyst c 0\ PU/C | S osf 005G
S - . @ packed bed & particle » Compression g E
. Interstitial gas in o S " s *_ 0.06
S o lonomer layer ~ Interstitial gas o _ LI - G
S the secondary pore = 2o i ] in the primary » More realistic unit cell geometry 2 e
L 3 ‘ stitiat gas | s ore (PP E z
3V _ B __ __the secondary pore S Vv _.P (PP) *_E 02 ( A =
= = A L E
) s & . 1 =
Unit cell of Pt/C for fully Unit cell of Pt/C for partially Unit cell of the packed e s IS 00p
covered aggiomerates covered agglomerates Pt/C par“CIeS Pore size diameter (um)

Modeling the effect of ionomer coverage
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